Whole cell patch-clamp recordings of rat midbrain dopaminergic neurons isolate a sulphonylurea- and ATP-sensitive component of potassium currents activated by hypoxia.

نویسندگان

  • E Guatteo
  • M Federici
  • A Siniscalchi
  • T Knöpfel
  • N B Mercuri
  • G Bernardi
چکیده

The effects of brief (2-4 min) hypoxia on presumed dopaminergic "principal" neurons of the rat ventral mesencephalon were investigated by using either intracellular or whole cell patch-clamp recordings in in vitro conditions. Under single-electrode voltage clamp, with sharp microelectrode (Vh -60 mV), a brief hypoxia caused an outward current (hypoOUT) of 110.2 +/- 15.2 (SE) pA (n = 18), which was followed by a posthypoxic outward current (posthypoOUT) of 149.6 +/- 10.6 pA (n = 18). Although the hypoOUT reversed at -83.7 +/- 3.8 mV (n = 18), the posthypoOUT did not reverse. The K+ATP-blocking sulphonylureas tolbutamide (100 microM) and glibenclamide (30 microM), significantly reduced the peak of the hypoOUT by 47.6 +/- 7.7% (n = 16) and 54.18 +/- 7.5% (n = 3), respectively. In contrast, they did not affect the posthypoOUT. Extracellular barium (300 microM to 1 mM) almost abolished the hypoOUT, leaving the posthypoOUT unchanged. The large K+ channel blocker charybdotoxin (10-50 nM), depressed the hypoOUT after tolbutamide treatment. To investigate whether or not cytosolic factors might control the development of the hypoOUT, we dialyzed the principal neurons by patch-clamp recordings (Vh -60 mV). Under whole cell recordings hypoxia evoked an hypoOUT of 70.2 +/- 14.5 pA that reversed polarity at -87.9 +/- 5.1 mV (n = 8). A small posthypoxic response was detected upon reoxygenation in a few neurons (4 out of 14). Three different sulphonylureas, tolbutamide (100 microM), glibenclamide (10-30 microM), and glipizide (100 nM) completely blocked the hypoOUT in patch-clamped neurons. The hypoOUT was also abolished by extracellular BaCl2 (300 microM). When the content of ATP in the dialyzate was raised from 2 to 10 mM no outward current/hyperpolarization was evoked by hypoxia. These data suggest that the hypoOUT, in principal neurons, is a complex response sustained by at least two barium-sensitive components: 1) an ATP-dependent, sulphonylurea-sensitive K+ conductance which could be isolated by the patch-clamp techniques and 2) a K+ conductance remaining after tolbutamide in intracellularly recorded neurons, which is sensitive to charybdotoxin and dependent on dialyzable cytosolic factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of a potassium conductance in rat midbrain dopamine neurons by intracellular adenosine triphosphate (ATP) and the sulfonylureas tolbutamide and glibenclamide.

The presence of adenosine triphosphate-regulated potassium channels (K-ATPs) in midbrain dopamine neurons is currently in dispute. This was investigated using whole-cell patch-clamp recordings from dopamine neurons in slices of midbrain from 9-12-d-old rats. Intracellular dialysis with Mg2+ ATP-free solutions resulted in a membrane hyperpolarization (14 +/- 6 mV), or outward current (102 +/- 27...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

Actions and release characteristics of secretin in the rat cerebellum

Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...

متن کامل

The Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus

Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...

متن کامل

The Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus

Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 3  شماره 

صفحات  -

تاریخ انتشار 1998